Diameter of Zero Divisor Graphs of Finite Direct Product of Lattices
نویسندگان
چکیده
In this paper, we verify the diameter of zero divisor graphs with respect to direct product. Keywords—Atomic lattice, complement of graph, diameter, direct product of lattices, 0-distributive lattice, girth, product of graphs, prime ideal, zero divisor graph.
منابع مشابه
A generalization of zero-divisor graphs
In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores
متن کاملThe Diameter of a Zero-divisor Graph for Finite Direct Product of Commutative Rings
This paper establishes a set of theorems that describe the diameter of a zero-divisor graph for a finite direct product R1 × R2 × · · · × Rn with respect to the diameters of the zero-divisor graphs of R1, R2, · · · , Rn−1 and Rn(n > 2).
متن کاملL-zero-divisor Graphs of Direct Products of L-commutative Rings
L-zero-divisor graphs of L-commutative rings have been introduced and studied in [5]. Here we consider L-zero-divisor graphs of a finite direct product of L-commutative rings. Specifically, we look at the preservation, or lack thereof, of the diameter and girth of the L-zirodivisor graph of a L-ring when extending to a finite direct product of L-commutative rings.
متن کاملOn zero divisor graph of unique product monoid rings over Noetherian reversible ring
Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors. The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero zero-divisors of $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$. In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...
متن کاملOn quasi-zero divisor graphs of non-commutative rings
Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...
متن کامل